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This book, in two volumes, is a history of probability written from a humanistic and
intellectual perspective in discursive commentary style, with much attention to the
details of the social and scientific backdrop of the protagonists Emile Borel (1871-1956)
and Pierre-Simon de Laplace (1749-1827), as well as their enormous retinues. It also
has the nature of an encyclopedia through its extremely useful Name Index (pp. 775—
816), which also gives birth and death years. The pagination of the two volumes is
consecutive: Volume 1, pp. 1-286; Volume 2, pp. 287-818.

The book arose out of the authors’ promise to Marc Barbut (1928-2011) to celebrate
the centenary of “Les probabilités dénombrables” of Borel [Rend. Circ. Mat. Palermo 27
(1909), 247-271; JFM 40.0283.01]. This is one of the foundational texts of probability
in the 20th century, in its conception of an event describing a denumerably infinite
number of events occurring. Other centenaries intervened, especially those of Laplace’s
Théorie analytique des probabilités (1812, 1814) [ Théorie analytique des probabilités. Vol.
I, reprint of the 1819 fourth edition (Introduction) and the 1820 third edition (Book I),
Ed. Jacques Gabay, Paris, 1995; MR1400402; Théorie analytique des probabilités. Vol. I1,
reprint of the 1820 third edition (Book IT) and of the 1816, 1818, 1820 and 1825 originals
(Supplements), Ed. Jacques Gabay, Paris, 1995; MR1400403], so eventually the authors
blended the Borel and Laplace material as the dominant content of the two volumes.

Laplace worked, rather, with a finite number of events, n, and used asymptotic
methods of analysis as n — oo such as Stirling’s formula to develop versions of the
celebrated theorem for limits of probabilities relating to the number of successes in
binomial trials. The distinction between the approaches of Borel and Laplace is now
reflected, respectively, in “convergence almost surely” and “convergence in distribution”,
since the latter is a concept in the convergence of monotonic functions, while the former
requires measure-theoretic probability for its proper expression. The distinction between
the two frameworks, denumerably infinite and finite, is the basis for the division of the
book into two volumes.

Barbut, of the Ecole des hautes études en sciences sociales, Paris, was the driving
force behind the bilingual Electronic Journal for the History of Probability and Statistics
(Laurent Mazliak, ed.), and especially (with himself as chief editor) of Mathématiques et
sciences humaines, in the spirit of which the present two volumes are written. According
to Barbut’s wish, the book is intended “for everybody”, especially for students of the
probability calculus, to provide a diversity of historical trails to follow. Accordingly,
the Bibliography (pp. 589-774) is enormous. And there is a didactic component, an
introduction to the history of the probability calculus, as Annexes 1 and 2 of Volume
2. Annexe 2 is derived from [B. Bru, Math. Sci. Hum. Math. Soc. Sci. No. 175 (2006), 5—
23; MR2275932], a delightful exposition not listed in the book’s Bibliography. Annexe
1, on “Dice games”, is a study in the prehistory of the problem of points, that is on the
equitable division of stakes for an unfinished game of chance. This problem is associated
in the history of probability with the names of Pascal and Fermat in 1654. The present
authors take us through the calculations in the much older De wvetula. This annex has
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already been translated into English by Glenn Shafer and published as [M.-F. Bru
and B. Bru, Statist. Sci. 33 (2018), no. 2, 285-297; MR3797715]. Shafer’s article [G. R.
Shafer, Statist. Sci. 33 (2018), no. 2, 277-284; MR3797714], anticipating the imminent
appearance of the long-awaited two-volume history of mathematical probability under
review, is in itself a background to (and partial review of) the whole.

Borel [op. cit. (Chapter 1)] considered an infinite sequence of independent trials with
probability pp of success at the k-th trial, k¥ > 1, and concluded that the probability
of an infinite number of successes is 0 if Y pp < oo, and is 1 if Y py = co. This has
come to be known as “Borel’s zero-one law”. He himself called it “the fundamental
theorem of the theory of denumerable probabilities”. His proof is deficient in a number
of respects, and his attempt to use the result to deduce a Strong Law of Large Numbers
was inappropriate since the events considered there are not independent. The result,
which is called the Borel-Cantelli Lemma in now-classical axiomatic probability theory,
reads: For any sequence of events {4,,} in a given probability space (2, B, P), where
is the sample space, B is a o-algebra of sets of sample points, called “events”, and P is
a o-additive probability measure on B, then

Y P(4,) <oo= P(A,i0.)=0

(this is the “convergence” part). If the events {4, } are independent, then

Y P(4,)=c0= P(A,i0.) =1

(this is the “divergence” part). Consequently, this result is ascribed to Borel for inde-
pendent events, and to Cantelli, in 1917, in the “convergence” version for not necessarily
independent events. Here {A,, i.0.} is the event that an infinite number of the events
{A,,} occur. There is a very large literature on these matters, which is fully cited within
the immense Bibliography of the book under review, and discussed in meticulous detail
in Volume 1, Section 7 (pp. 71-94), which covers Borel’s work on “probabilités denom-
brables” of 1896-1909; and also in the extensive notes (125), pp. 193-194, and (159),
p. 239. For the English-language reader, a lead-in to the literature and issues is in [E.
Seneta, Historia Math. 19 (1992), no. 1, 24-39; MR1150880].

Borel’s preoccupation in 1909-1949 with “martingales dénombrables”, presented in
Volume 1, Section 8, relates to the St. Petersburg Paradox, which originated in 1713.
Here “the game stops” can occur at any positive integer time point. The material was
presented more formidably in [B. Bru, M.-F. Bru and K. L. Chung, J. Electron. Hist.
Probab. Stat. 5 (2009), no. 1, 58 pp.; MR2520662], but the introductory first part of
Section 8 is on Laplace’s dismissal, in his Fssai philosophique des probabilités of 1816
[see op. cit.; MR1400402], of two martingales focussing on strategies for perpetuating
the family surname, by males procreating until a son, or two successive sons, are born.
This section testifies to the authors’ detailed knowledge of, and devotion to, Laplace, to
whom the 8 Appendices, pp. 377-588 in Volume 2, are devoted.

The authors write in their introduction to Volume 2 that these appendices “turn
about the personnage of Laplace and his Théorie analytique which remains one of the
summits of mathematical literature of all times”. Appendix 1 (pp. 377-394) accordingly
describes “the method of Laplace for the approximation of formulae which are functions
of very large numbers”. The centerpiece result of Laplace to which the methodology finds
application is the “inverse” of the Moivre-Laplace Theorem, the “direct” theorem which
gives the standard normal distribution (the Gaussian curve) for the limiting distribution
as n — oo of the standardized proportion of successes, P, observed in n binomial trials
with fixed probability of success #. The inverse theorem presupposes a prior uniform
distribution on (0,1) for #, and finds that the standard normal probabilities can be
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used to describe approximately, for large n, the posterior distribution of #, given the
number of successes. Thus, in regard to modern mathematical statistics, Laplace was a
Bayesian, and his technical development in this direction is competently and effectively
described in the “encyclopedias of mathematical statistics” of S. M. Stigler [ The history
of statistics, Belknap Press/Harvard Univ. Press, Cambridge, MA, 1986; MR0852410]
and A. H. Hald [A history of mathematical statistics from 1750 to 1930, Wiley Ser.
Probab. Stat. Texts Ref. Sect., Wiley, New York, 1998; MR1619032]. Indeed, Bayesian
inference, from effect to cause, was the only form of inference about parameters, and as
Augustus De Morgan (1806—1871) observed at the end of his 1837 two-part review of the
third (1820) edition of the Théorie analytique: “the greater part of the treatise is full of . . .
questions ... bearing in the most direct manner on the way to draw correct inferences
from physical and statistical facts”. In fact, two of Laplace’s major and interrelated
statistical themes are, in modern terms, the Central Limit Theorem expressed in the
form of the Gaussian curve, and his justification of the method of least squares, with
the Gaussian distribution as a Law of Error. It is from De Morgan’s review that the
description of the Théorie analytique as “the Mont Blanc of mathematical analysis”
comes, whose quotation continues, however, with “it gave neither finish nor beauty to
the results”.

In 1837 De Morgan also published a lengthy article entitled Theory of probabilities
in the Encyclopedia Metropolitana, which served not only as a digest of the Théorie
analytique, but also a simplification and clarification of the proofs, and gave rise to a
British “Laplacian” direction [A. C. Rice and E. Seneta, J. Roy. Statist. Soc. Ser. A 168
(2005), no. 3, 615-627; MR2146412]. Similarly, Viktor Yakovlevich Buniakovsky (1804—
1889), who had studied at the Sorbonne and College de France in Paris from 1824 to
1825, and had contact with the work of Laplace, Poisson, Fourier, Legendre, and Ampere,
but principally Cauchy (a contact commemorated in the Cauchy-Schwarz-Buniakovsky
Inequality), presented to the St. Petersburg Academy in 1841 an announcement entitled
Sur la publication, en russe, d’une Théorie analytique des probabilités. This shows clearly
his intention to parallel in nature Laplace’s treatise, with the aim of filling a gap due to
the absence of probability theory in the Russian mathematical literature, while making
“more accessible the delicate theories of which the calculus of chances offers many
examples”. The resulting book was Osnovaniia matematecheskoi teorii veroiatnostei
[Foundations of the mathematical theory of probabilities] (1846). The book separates
out a priori calculation of probabilities from a posteriori, and presents Buniakovsky
as a disciple and elucidator of Laplace in probability theory, similar to De Morgan
in the British setting and Irenée-Jules Bienaymé [C. C. Heyde and E. Seneta, I. J.
Bienaymé. Statistical theory anticipated, Springer, New York, 1977; MR0462888] and
possibly Hermann Laurent, in the French, while creating Russian-language probabilistic
terminology. A Bayesian tradition of statistical inference lived on in the Russian Empire
up to the Bolshevik revolution, including some writings of A. A. Markov.

Appendix 6 is about Hermann Laurent’s Théorie analytique (1873).

Appendix 2, on the “statistical geometry” of Laplace (1776-1812), seeks to connect
this topic with the later work of Borel on the calculation of volumes in an arbitrary
number of dimensions. It describes how Laplace was motivated to return to proba-
bility theory “proper” in 1810 by geometric considerations in cosmology, and indeed,
consequently to formulate “Laplace’s Theorem” . Borel was aware of the similar German-
language work of Sommerfeld and Pélya, but, like these authors, was unaware that some
of their material was present already in the Théorie analytique. Their geometric subject
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matter was based on the volume defined by

les| <ag i=1,...,m; < ani1,

n
>
i=1

for which Pélya found an elegant integral form which in the case a; = %, apt1 =MNn
is in fact P(| Y, X;| < ny/n), for independently and uniformly distributed random
11

variables X;,i=1,... ,n on (—5, 5). Then allowing n — oo in this expression gives a
1

limiting normal distribution of variance 5.

Appendices 7 and 8 are consequently about the work of Sommerfeld (1904) and Pélya
(1912), which was in the Gaussian, rather than the Laplacian, direction.

Appendix 3 is on the inversion formulae of Lagrange.

Appendix 4, entitled “Propaganda laplacienne”, addresses the paradox of the Théorie
analytique and Essai philosophique being both the epitomy of scientific and philosophical
creativity, and being mostly unreadable; and unread after the first half of the 19th
century until the Stigler and Hald treatises. It begins with Laplace’s own beliefs in the
works, and the propagation of these convictions.

Appendix 5, entitled “Souvenirs laplaciennes”, looks at aspects of Laplace’s interests
which don’t relate directly to the probability calculus. Laplace lived through a stormy
period of French history, when, for example, religion was tightly controlled. A section
dealing with his family life is fascinating.

This book is an essential for any student of the history and sociology of probability,
and of mathematical statistics in general. That subject matter is deeply imbedded in
the French tradition. These volumes, with the aid of the excellent name index, are full
of unexpected gems of information and insight within a rich tapestry of history. The
work is clearly a kind of swansong, an illuminating culmination of many years of deep
study and devotion. E. Seneta




