Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>9</td>
</tr>
<tr>
<td>List of contributors</td>
<td>11</td>
</tr>
<tr>
<td>Abstracts</td>
<td>13</td>
</tr>
<tr>
<td>Contents</td>
<td>17</td>
</tr>
</tbody>
</table>

Chapter 1. Sorption processes and pollution: An introduction
Grégorio CRINI and Pierre-Marie BADOT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td>Water pollution</td>
<td>28</td>
</tr>
<tr>
<td>Different types of effluent</td>
<td>28</td>
</tr>
<tr>
<td>The variability of pollution</td>
<td>28</td>
</tr>
<tr>
<td>Wastewater treatment</td>
<td>30</td>
</tr>
<tr>
<td>General scheme of wastewater treatment</td>
<td>30</td>
</tr>
<tr>
<td>Technologies available for pollutant removal</td>
<td>31</td>
</tr>
<tr>
<td>Sorption processes</td>
<td>34</td>
</tr>
<tr>
<td>Activated carbon sorption</td>
<td>34</td>
</tr>
<tr>
<td>Non-conventional sorbent materials</td>
<td>35</td>
</tr>
<tr>
<td>Conclusions</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
</tbody>
</table>

Chapter 2. Wastewater treatment by sorption
Grégorio CRINI

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>39</td>
</tr>
<tr>
<td>Pollutants as sorbates</td>
<td>40</td>
</tr>
<tr>
<td>Sorption processes</td>
<td>42</td>
</tr>
<tr>
<td>Definitions</td>
<td>42</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Batch methods</td>
<td>44</td>
</tr>
<tr>
<td>Sorbent materials</td>
<td>45</td>
</tr>
<tr>
<td>Characterization of sorbents</td>
<td>46</td>
</tr>
<tr>
<td>Types of sorbent material for pollutant removal</td>
<td>49</td>
</tr>
<tr>
<td>Control sorbent performance</td>
<td>55</td>
</tr>
<tr>
<td>Influence of the solid characteristics</td>
<td>55</td>
</tr>
<tr>
<td>Surface chemistry of the sorbent</td>
<td>55</td>
</tr>
<tr>
<td>Activation conditions</td>
<td>56</td>
</tr>
<tr>
<td>Effect of operating variables</td>
<td>56</td>
</tr>
<tr>
<td>Effect of the solution conditions</td>
<td>57</td>
</tr>
<tr>
<td>Chemistry of the pollutant</td>
<td>58</td>
</tr>
<tr>
<td>Sorbent regeneration – desorption of pollutants</td>
<td>58</td>
</tr>
<tr>
<td>The mechanisms of sorption/adsorption/biosorption</td>
<td>59</td>
</tr>
<tr>
<td>Modeling</td>
<td>61</td>
</tr>
<tr>
<td>Freundlich and langmuir sorption isotherms</td>
<td>63</td>
</tr>
<tr>
<td>Error functions</td>
<td>65</td>
</tr>
<tr>
<td>Kinetics</td>
<td>66</td>
</tr>
<tr>
<td>Thermodynamic studies</td>
<td>71</td>
</tr>
<tr>
<td>Conclusions</td>
<td>72</td>
</tr>
<tr>
<td>References</td>
<td>73</td>
</tr>
</tbody>
</table>

Chapter 3. Fixed-bed adsorption studies
Adriana S. FRANCA and Leandro S. OLIVEIRA

Introduction | 79 |
Determination and prediction of breakthrough curves	81
Bohart and Adams model (BDST)	84
Clark model	85
Thomas model	86
Yoon and Nelson model	87
Wolborska model	87
Modified BDST model	88
Dose-response model	89
Constant pattern wave model	90
Mass transfer theory-based models	91
Applications in pollutant removal	94
Concluding remarks	105
Acknowledgements	106
References	106

Chapter 4. Adsorption of phenolic compounds on activated carbons
Mariusz BARCZAK and Andrzej DĄBROWSKI

Introduction | 113 |
Activated carbon as the basic adsorbent for uptake of phenols 117
Precursors of activated carbons 117
Surface chemistry of activated carbon 120
Adsorption of phenols on activated carbon 121
Role of the surface heterogeneity in the adsorption of phenols 121
Role of the porous structure on the adsorption of phenols 124
Irreversible adsorption of phenols 125
Concluding remarks 127
Acknowledgements 127
References 127

Chapter 5. Influence of thermal and chemical treatments on activated carbon characteristics, and effects on adsorption performance with respect to dyes, emerging contaminants and humic acids 131
Sarra GASPARD, Marie-Julie PINTOR, Axelle DURIMEL and Valérie JEANNE-ROSE
Introduction 131
Elaboration of activated charcoals 132
Elaboration by physical activation 134
Chemical activation 136
Influence of activation method 138
Methods and tests for activated carbon characterization 139
Usual methods 140
Original methods 147
Dyes adsorption 148
Isotherm models 148
Dyes removal 149
Emerging contaminants and pesticides adsorption 154
Humic substances 157
Concluding remarks 160
Acknowledgments 160
References 160

Chapter 6. Silicas adsorbents for pollutants removal 167
Sławomir BINKOWSKI
Introduction 167
Characteristics of silica 168
Classification 168
Surface chemistry 169
Modification of the silica surface 171
Contents

Modifying agents 171
Silane proadhesion compounds 171
Methods of modification 172
Adsorption of pollutants 175
Types of pollutants 175
Adsorption of various pollutants on silica adsorbents 176
Conclusions 183
Acknowledgments 184
References 184

Chapter 7. Non-conventional sorbents for dye removal
François RENAULT, Nadia MORIN-CRINI, Pierre-Marie BADOT and Grégorio CRINI 187
General 187
Dye molecules 188
Langmuir equation 188
Non-conventional sorbents for dye removal 189
Activated carbons from solid wastes 189
Clays 191
Siliceous materials 192
Zeolites 194
Agricultural solid wastes 194
Industrial by-products 196
Peat 197
Chitin and chitosan 198
Biomass 200
Starch-based derivatives 202
Miscellaneous sorbents 203
Concluding remarks 204
Acknowledgements 205
References 205

Chapter 8. Kaolin as an adsorbent for color removal
Aparajita GOSWAMI and Mihir Kumar PURKAIT 215
Introduction 215
Techniques used for color removal from wastewater 217
Physical techniques 217
Chemical techniques 218
Biological treatment 218
Different adsorbents used for treating colored water 218
Kaolinite as an adsorbent for dye removal 219
Chapter 9. Wood sawdust, tree bark and wood chips: Waste lignocellulosic materials for dye removal
Viorica DULMAN and Simona-Maria CUCU-MAN

Introduction
Preparation and characterization of wood-derived lignocellulosic adsorbents
Preparation of adsorbents
Characterization of adsorbents
Adsorption mechanism
Factors affecting the batch adsorption of dyes on wood-derived lignocellulosic adsorbents
Effect of pH
Effect of initial dye concentration and contact time
Effect of chemical treatment of adsorbent
Effect of particle size
Effect of adsorbent dose
Effect of salts and surfactants
Effect of agitation rate
Effect of temperature
Adsorption equilibrium
Adsorption kinetic models
Pseudo-first order model
Pseudo-second order model
Diffusion processes
Other kinetic models
Thermodynamic studies
Column studies
Concluding remarks
References
Chapter 10. Polysaccharides for metal ion recovery – A focus on chitosan
Jacques DESBRIERES and Eric GUIBAL

Introduction 271
Sorption mechanisms on chitosan 273
 Physico-chemistry of chitosan complexation 273
 Electrostatic attraction and ion exchange mechanisms 276
Controlling parameters 278
 Crystallinity and swelling behavior 278
 Diffusion properties 279
 Metal speciation properties 281
Modes of application 284
 Chitosan in solution 285
 Chitosan in batch/column 285
 Specific conditionings 286
Example: application to recovery of metals from tannery waters in Morocco 287
Chitosan and metal ions for the design of new materials 288
 Environmental applications 288
 Analytical applications 288
 Biological and biomedical applications 289
 Catalytic applications 290
 Biosensor and microdevices applications 291
 Miscellaneous applications 292
Conclusions and perspectives 292
References 293

Chapter 11. Non-conventional adsorbents for the removal of metal compounds from wastewaters
Fabio MONTAGNARO and Luciano SANTORO

Introduction 297
Use of non-conventional adsorbents: materials nature and properties, and beneficiation treatments 299
 Coal combustion ash and other industrial residues 299
 Natural materials, agricultural by-products and other biomasses 301
Adsorption of metals on non-conventional adsorbents 302
 Specific adsorption capacity 302
 Langmuir isotherm and thermodynamic parameters 304
 Kinetic parameters 305
 Controlling mechanisms 308
Concluding remarks 309
Acknowledgements 310
References 311

Chapter 12. Pollutant removal from surface-treatment industry wastewaters by starch-based sorbents: Chemical abatement and impact on water toxicity
Jérémie CHARLES, Bertrand SANCEY, Giuseppe TRUNFIO, Pierre-Marie BADOT, Michel De CARVALHO, Albert COLIN, Michaël RIETMANN, Jean-François MINARY, Emmanuel GROSJEAN and Grégorio CRINI 313

Introduction 313
Legislation for the control of discharge to the aquatic environment 314
Pollution produced by surface-industries 316
Different types of pollutants 317
The variability of pollution 318
Technologies available for pollutant removal from surface-finishing industry wastewater 320
Chemical precipitation 321
Other methods 323
Separation, recovery and sorption processes 324
Ion-exchange resins 324
Activated carbon adsorption 324
Adsorption using other materials 325
Biosorption of heavy metals 326
Starch-based materials 327
Chemical abatement and impact on water toxicity 327
Closing comments 331
Acknowledgements 331
References 331

Chapter 13. Defluoridation of water and wastewater using non-conventional sorbents
Giuseppe TRUNFIO, Bertrand SANCEY, Xavier HUTINET and Grégorio CRINI 335

Defluoridation of water/wastewater 335
Fluoride 335
Conventional treatments 336
Sorbents for fluoride removal 340
Activated alumina and alumina-based sorbents 340
Carbon and carbon-based sorbents 343
Rare earth elements 343
Soils 344
Clays 344
Calcium 346
Zeolites 346
Chapter 14. Fungal biomasses: non conventional biosorbents for organic and inorganic pollutants
Valeria TIGINI, Valeria PRIGIONE, Ilaria DONELLI, Antonella ANASTASI, Francesca ISELLA, Giuliano FREDDI and Giovanna Cristina VARESE

Introduction
Biosorption as an important tool in water decontamination
Classification and characteristics of fungi
Fungal cell structure and composition with special reference to cell wall
Fungal biosorbents towards organic and inorganic pollutants
Inorganic pollutants
Organic pollutants
Biotic parameters affecting fungal biosorption
Abiotic parameters affecting biosorption
Mechanisms and functional groups related to fungal biosorption
Analytical techniques useful in biosorption studies
Application of fungal biosorbents to real wastewaters
Future in fungal biosorbents
Acknowledgements
References

Chapter 15. Cross-linked cyclodextrins for pollutant removal
Bertrand SANCEY, Grégorio CRINI, Giuseppe TRUNFIO, Nadia MORIN-CRINI and Giangiacomo TORRI

General
Synthesis of cross-linked cyclodextrin-based sorbents
Materials modified by epichlorohydrin
Other materials prepared by direct cross-linking of cyclodextrin
Cross-linked cyclodextrins for pollutant removal
A recent review of the literature
Sorption mechanism
Conclusions
Chapter 16. Calixarene based materials for cations and anions
Mustafa YILMAZ, Abdulkadir SIRIT and Hasalettin DELIGOZ

Introduction 401
Calixarene-based materials for cations 403
Calixarene-based materials for alkali and alkaline earth metals 404
Calixarene-based materials for heavy metal ions 408
Calixarene-based materials for toxic anions 413
Acknowledgements 416
References 417

Chapter 17. Recent advances in porosinit-based nanocomposite adsorbents for pollutants removal from waters
Bingcai PAN, Xiaolin ZHANG, Weiming ZHANG, Lu LV and Quanxing ZHANG

Introduction 421
Nano-metal/metallic compounds and their composite adsorbents 422
Iron and iron (hydr)oxide 423
Carbonaceous nanomaterials and their composites 429
Nano-polysaccharides and their composites 431
Conclusion 432
References 432

Chapter 18. Molecularly imprinted polymers (mips) as selective sorbents for wastewater pollutants
George Z. KYZAS and Nikolaos K. LAZARIDIS

Introduction 441
Preparation of MIPs 443
Selectivity 444
MIPs as sorbents for wastewater pollutants 445
Dyes 445
Ions 446
Herbicides 449
Phenols 451
Pharmaceuticals/drugs 452
Conclusions and perspectives 453
References 453
Chapter 19. Nanoparticles for pollutants removal

Yousef HAIK and Shahnaz QADRI

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>459</td>
</tr>
<tr>
<td>Synthesis of nanoparticles</td>
<td>461</td>
</tr>
<tr>
<td>Synthesis of carbon nanotubes</td>
<td>461</td>
</tr>
<tr>
<td>Synthesis of magnetic nanoparticles</td>
<td>462</td>
</tr>
<tr>
<td>Borohydride reduction</td>
<td>463</td>
</tr>
<tr>
<td>Chemical co-precipitation method</td>
<td>463</td>
</tr>
<tr>
<td>Refluxing in polyol method</td>
<td>464</td>
</tr>
<tr>
<td>Encapsulating the magnetic nanoparticles</td>
<td>465</td>
</tr>
<tr>
<td>Solvent displacement method</td>
<td>465</td>
</tr>
<tr>
<td>Salting out technique</td>
<td>465</td>
</tr>
<tr>
<td>Emulsion diffusion method</td>
<td>466</td>
</tr>
<tr>
<td>Solvent evaporation method</td>
<td>466</td>
</tr>
<tr>
<td>Polymer emulsion process</td>
<td>466</td>
</tr>
<tr>
<td>Magnetic separation</td>
<td>467</td>
</tr>
<tr>
<td>Adsorption models</td>
<td>468</td>
</tr>
<tr>
<td>Sorption example</td>
<td>469</td>
</tr>
<tr>
<td>Dye removal by use of magnetic nanoparticles</td>
<td>469</td>
</tr>
<tr>
<td>Preparation of magnetic nanoparticles</td>
<td>469</td>
</tr>
<tr>
<td>Characterization of magnetic nanoparticles</td>
<td>470</td>
</tr>
<tr>
<td>Dye solution</td>
<td>471</td>
</tr>
<tr>
<td>Equilibrium studies</td>
<td>472</td>
</tr>
<tr>
<td>Dye recovery</td>
<td>474</td>
</tr>
<tr>
<td>Dye removal by use of carbon nanotubes</td>
<td>475</td>
</tr>
<tr>
<td>Comparison between magnetic nanoparticles and carbon nanotubes</td>
<td>477</td>
</tr>
<tr>
<td>Nanotoxicity</td>
<td>477</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>478</td>
</tr>
<tr>
<td>References</td>
<td>478</td>
</tr>
<tr>
<td>Biography and address of contributors</td>
<td>481</td>
</tr>
<tr>
<td>Key-words</td>
<td>491</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>493</td>
</tr>
<tr>
<td>Greek Letters</td>
<td>495</td>
</tr>
<tr>
<td>Notation</td>
<td>495</td>
</tr>
</tbody>
</table>